This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.

Decades of research yield natural dairy thickener with probiotic potential

15 June 2015

copyright: OSU
copyright: OSU

Microbiologists at Oregon State University have discovered and helped patent and commercialise a new type of dairy or food thickener, which may add probiotic characteristics to the products in which it’s used.

The thickener is now in commercial use, and OSU officials say it may have a significant impact in major industries. The global market for polymers such as this approaches $7 billion, and there are estimates the US spends up to $120 billion a year on probiotic products such as yogurt, sour cream and buttermilk.

The new product is produced by a natural bacterium that was isolated in Oregon. It’s the result of decades of research, beginning in the early 1990s when a novel polymer with an ability to rapidly thicken milk was discovered by an OSU microbiologist. The polymer is known as Ropy 352 and produced by a non-disease-causing bacterium.

“This is one of many naturally occurring, non-disease-causing bacterial strains my research program isolated and studied for years,” said Janine Trempy, an OSU microbiologist. “We discovered that this bacterium had a brand-new, never-before reported grouping of genes that code for a unique polymer that naturally thickens milk. In basic research, we’ve also broadened our understanding of how and why non-disease-causing bacteria produce polymers.”

This polymer appears to give fermented foods a smooth, thick, creamy property, and may initially find uses in sour cream, yogurt, kefir, buttermilk, cream cheese and artisan soft cheeses. Composed of natural compounds, it offers a slightly sweet property and may improve the sensory characteristics of low-fat or no-fat foods. And unlike other polymers that are now commonly used as thickeners, it may add probiotic characteristics to foods, with associated health benefits.

“There are actually very few new, non-disease-causing bacterial strains that produce unique polymers with characteristics desirable and safe for food products,” Trempy said. “In the case of a dairy thickener, for instance, a bacterium such as Ropy 352 ferments the sugar in the milk and produces a substance that changes the milk’s properties.”

These are chemical processes driven by naturally occurring bacteria that do not cause disease in humans, Trempy said, but instead may contribute to human health through their probiotic potential.

One of the most common polymers, xanthum gum, has been in use since 1969 and is found in a huge range of food products, from canned foods to ice cream, pharmaceuticals and beauty products. Xanthum gum is “generally recognised as safe” by the FDA, but is derived from a bacterium known to be a plant pathogen and suspected of causing digestive distress or being “pyrogenic,” or fever-inducing.

Trempy’s research program has determined the new polymer will thicken whole and non-fat milk, lactose-free milk, coconut milk, rice milk, and other products designed for use in either dieting or gaining weight. Beyond that, the polymer may have a wide range of applications such as thickening of pharmaceuticals, nutraceuticals, fruit juices, cosmetics and personal care products.

In their broader uses, microbial polymers are used for food production, chemical production, detergents, cosmetics, paints, pesticides, fertilisers, film formers, lubricants, explosives, pharmaceutical production and waste treatment.

OSU recently agreed to a non-exclusive license for the patented Ropy 352 technology to a global market leader for dairy starter cultures. It’s also available for further licensing through OSU’s Office of Commercialization and Corporate Development.


Print this page | E-mail this page

MOST VIEWED...


Article image Spray and save on the glazing process

Food glazes are widely used in the bakery sector to improve the look and taste of baked products. Traditionally, this coating process has resulted in substantial waste. Technology advances mean that this is no longer the case. Full Story...

Article image Your flexible friend in the food factory

Suzanne Gill finds out where thermal imaging technology can help around the factory. Full Story...

What role does refrigeration play in the supply chain?

A dry-ageing process improvement

Self diagnostics: an enabler for predictive maintenance

http://www.appetite4eng.co.uk